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Abstract - The superior colliculus is organized topographically
as a neural map.  The deep layers of the colliculus detect and
localize targets in the environment by integrating input from
multiple sensory systems.  Some deep colliculus neurons
receive input of only one sensory modality (unimodal) while
others receive input of multiple modalities.  Multimodal deep
SC neurons exhibit multisensory enhancement, in which the
response to input of one modality is augmented by input of
another modality.  Multisensory enhancement is magnitude
dependent in that combinations of smaller single-modality
responses produce larger amounts of enhancement.  These
findings are consistent with the hypothesis that deep colliculus
neurons use sensory input to compute the probability that a
target has appeared at their corresponding location in the
environment.  Multisensory enhancement and its magnitude
dependence can be simulated using a model in which sensory
inputs are random variables and target probability is
computed using Bayes’ Rule.  Informational analysis of the
model indicates that input of another modality can indeed
increase the amount of target information received by a
multimodal neuron, but only if input of the initial modality is
ambiguous.  Unimodal deep colliculus neurons may receive
unambiguous input of one modality and have no need of input
of another modality.
Keywords - Superior colliculus, computational neuroscience,
multisensory integration, sensor fusion

INTRODUCTION

Many neural structures are organized topographically, and
neural maps can be found throughout the brain.  One of the
most well studied examples of a neural map is the superior
colliculus (SC).  The SC is located in the mammalian
midbrain and is homologous to the optic tectum of non-
mammals [1].  On grounds of differing connectivity and
function, the SC can be divided into superficial and deep
layers [2].  The superficial SC receives only visual input and
sends it output primarily to the cortex.  The deep SC
integrates multisensory input and participates in the
generation of orienting movements directed toward the
source of sensory stimulation (target).

The deep SC in mammals receives convergent inputs
from the visual, auditory, and somatosensory systems [3].
The deep SC sends its outputs to premotor circuits in the
brainstem and spinal cord that control movements of the
eyes and other structures.  Neurons in the SC are organized
topographically according to their receptive fields.  Maps
for the various sensory modalities are in register.  The motor
output of the SC is also topographically organized.
Activation of neurons in a localized region of the SC leads
to an orienting movement, such as a saccade of a
stereotyped direction and magnitude.

Because the SC is organized topographically, it
automatically localizes a stimulus source according to the
corresponding location of the neurons in the SC map that
are activated by the stimulus.  Neurons in the deep SC can
be activated by stimuli of more than one sensory modality
[4-7].  Multimodal deep SC neurons can show the property
of multisensory enhancement.  Multisensory enhancement
(MSE) is defined as the augmentation of the response of a
neuron to a stimulus of one sensory modality by a stimulus
of another modality.  Percent MSE is computed as:

%MSE = [(CM–SMmax) / SMmax] × 100                      (1)
where CM is the combined-modality response and SMmax is
the larger of the two unimodal responses [6].  Percent MSE
can range upwards of 1000%.  Percent MSE is larger when
the single-modality responses are smaller (Fig. 1).  This
property, known as inverse effectiveness, is perhaps the
most revealing feature of MSE [3].

The findings on MSE and inverse effectiveness show
that multimodal deep SC neurons are performing a
computation more complicated than simple summation.  We
have proposed a probabilistic model that can account for
these findings [8].  The model provides a functional
interpretation of MSE.

PROBABILISTIC MODEL

We hypothesize that the response of a deep SC neuron to
multisensory input is proportional to the conditional
probability that a target has appeared in its receptive field.
A schematic diagram illustrating this hypothesis is shown in
Fig. 2.  The target is represented as binary random variable
T where T=1 when the target is present and T=0 when it is
absent.  As an example, we arbitrarily let the target-present
and target-absent prior probabilities be P(T=1) = 0.1 and

minimal sub-optimal optimal

Fig. 1. Data from a single deep SC neuron illustrating the phenomena of
multisensory enhancement and inverse effectiveness.

(Data redrawn with permission from [3].)

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 
 

0-7803-7211-5/01$10.00©2001 IEEE 

 



Report Documentation Page

Report Date 
25 Oct 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Computing Multisensory Target Probablities on a Neural Map 

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Department of Moelcular and Integrative Physiology and
Beckman Institute Urbana, IL 

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
October 25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



P(T=0) = 0.9, respectively.  The inputs to the deep SC,
being neural, are modeled as stochastic.  Discrete random
variables V and A represent the number of spikes per unit
time (0.25 s) in the inputs from the visual and auditory
systems.  The likelihoods of V or A represent the probability
of observing different levels of input V or A, given that the
sensory systems are being driven by a target (T=1) or are
only spontaneously active (T=0).  We model P(V|T=1),
P(V|T=0), P(A|T=1), or P(A|T=0) using Poisson distributions
where the driven means are larger than the spontaneous
means (Fig. 3).  For simplicity, we also assume that V and A
are conditionally independent given the target.  Because
P(T) and P(V|T) are properties of the sensory systems and
the environment, we assume that they can be represented by
the nervous system.

Given these distributions, the conditional probability of
the target given the input can be computed using Bayes’
Rule [9,10].  For example, consider a deep SC neuron
receiving only visual input V.  The unimodal Bayesian
probability of the target is:

P(T=1|V) = P(V|T=1) P(T=1) / P(V).                           (2)
By the principle of total probability [9,10]:

P(V) = P(V|T=1) P(T=1) + P(V|T=0) P(T=0).             (3)
The bimodal Bayesian target probability with V and A is:

P(T=1|V,A) = P(V,A|T=1) P(T=1) / P(V,A).                (4)
Because we assume, for simplicity, that the sensory inputs
are conditionally independent given the target:

P(V,A|T=1) = P(V|T=1) P(A|T=1),                               (5)
and again by the principle of total probability:

P(V,A) = P(V|T=1) P(A|T=1) P(T=1) +
P(V|T=0) P(A|T=0) P(T=0).                          (6)

Bayes’ Rule in the bimodal case can be used to simulate
MSE.  To do this, we evaluate P(T=1|V,A) when both inputs
V and A are driven (and V=A for simplicity), or when V or A
is allowed to vary while the other is fixed at the spontaneous
mean.  The driven means for this example are 10 for V and 8
for A, and the spontaneous means are 5 for both.  As V
and/or A increase, we find that P(T=1|V,A) transitions
sigmoidally from 0 to 1.  The curve begins rising for smaller
input values when both V and A are driven than when one is
driven and the other is spontaneous.  The simulated
response in the both-driven case [P(T=1|V,A)], and in either
of the driven/spontaneous cases [P(T=1|V,(A=5)) or
P(T=1|(V=5),A)] are plotted in Fig. 4.  The curves show that
the Bayesian probability of the target, especially for small
inputs, can be many times higher in the both-driven case
than in the driven/spontaneous cases.

This modeling result on MSE is used to simulate
inverse effectiveness.  Values of V and A are chosen that
have similar driven/spontaneous Bayesian probabilities at
three levels (minimal, sub-optimal, and optimal), and the
both-driven Bayesian probability is computed using the
same driven input values at each level.  Percent MSE is
computed using (1) where the both-driven and the larger
driven/spontaneous probabilities are substituted for CM and

Fig. 3. Spontaneous and driven input likelihoods modeled as
Poisson distributions having different means.

(Redrawn with permission from [8].)

Fig. 4. Bimodal Bayesian target probabilities in the both-driven and
the driven-spontaneous cases.

(Redrawn with permission from [8].)
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Fig. 2. Schematic diagram of the Bayes’ Rule model of multisensory
enhancement in the superior colliculus.
(Redrawn with permission from [8].)
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SMmax, respectively.  The Bayesian probabilities and their
%MSE values are shown in Fig. 5.  The probability values
chosen illustrate the broad range of %MSE that can be
simulated using the Bayesian model.  The simulated results
capture the essence of inverse effectiveness as it has been
observed experimentally (Fig. 1).

Interpreting the responses of SC neurons as
proportional to the probability of a target provides a
functional explanation for inverse effectiveness.  A large
unimodal stimulus provides overwhelming evidence of a
target.  The Bayesian probability of a target would be close
to 1 and a stimulus of another modality would not increase
it much.  However, if a unimodal stimulus is small, the
Bayesian probability of a target can be 0 or near 0.
Integrating a stimulus of another modality can dramatically
increase the probability that a target has appeared.  The
qualitative correspondence between the Bayesian
probabilities and the multisensory responses of deep SC
neurons strongly supports the hypothesis that deep SC
neurons compute the probability of a target given their
multisensory inputs.  The Bayes’ Rule model of MSE serves
as the basis for further analysis of multisensory integration.

INFORMATIONAL ANALYSIS

MSE may improve the ability of deep SC neurons to detect
targets, yet many deep SC neurons are not multisensory.
Respectively in cat and monkey, 46% and 73% of deep SC
neurons are unimodal, while fewer than 50% are bimodal
and fewer than 10% are trimodal in either species [11].  It is
not obvious why so many deep SC neurons are unimodal
despite the apparent usefulness of multisensory input.  MSE

may be a mechanism whereby the deep SC decreases the
uncertainty associated with some unimodal inputs.
Measuring uncertainty is the domain of information theory.
Information theoretic analysis offers a possible explanation
for the puzzling finding that some deep SC neurons are
multimodal while others are not [13].

The self-information, or information content of an event
such as the presence of the target T, is given by [10,12]:

I(T=1) = − log2(P(T=1))                                               (7)
where log2 is the logarithm to the base two.  Thus, the
information content of the event, measured in units of bits,
goes up as its probability goes down.  Since the binary
target is a random variable, I(T) is also a random variable.
The expected value of this information is called the entropy
and is denoted by H(T):

H(T) = − [P(T=1) log2(P(T=1)) +
P(T=0) log2(P(T=0))]                                    (8)

where x log2(x) is defined to be 0 when x=0.  Entropy is a
measure of the uncertainty associated with a random
variable.  For our prior distribution of T [P(T=1) = 0.1 and
P(T=0) = 0.9] entropy H(T) = 0.469 bits.  The conditional
entropy is the uncertainty that remains about the target after
sensory input has been taken into account.  For the
unimodal and bimodal cases of MSE the conditional entropy
would be computed respectively as:

H(T|V) = − ΣP(V) ΣP(T|V) log2(P(T|V)) and
H(T|V,A) = − ΣΣP(V,A) ΣP(T|V,A) log2(P(T|V,A))       (9)

where the inner summations are over the values of the target
and the outer summations are over the values of the sensory
inputs.  These formulae measure the uncertainty associated
with T given inputs V, or V and A.  Conditioning reduces
entropy, so H(T|V,A) ≤ H(T|V).

The amount by which unimodal input V, or bimodal
inputs V and A, reduces the uncertainty associated with T is
equivalent to the average information gain:

I(T;V) = H(T) −  H(T|V) and
I(T;V,A) = H(T) −  H(T|V,A).                                      (10)

The average information gain is equivalent to the mutual
information between the target and inputs of one or two
modalities.  Mutual information can be used to quantify the
ability of inputs having different statistical structures to
provide target information.

The inputs themselves can be characterized using
another information theoretic measure known as relative
entropy, or the Kulback-Leibler divergence D.  We assume
that the ability of inputs V and A to provide information to
deep SC neurons about the target is related to the divergence
between their spontaneous and driven likelihood
distributions.  For the unimodal and bimodal cases, this
divergence can be quantified as follows:

D(P(V|T=0)||P(V|T=1)) = ΣP(V|T=0)
log2(P(V|T=0)/P(V|T=1)) and

D(P(V,A|T=0)||P(V,A|T=1)) = ΣΣP(V,A|T=0)
log2(P(V,A|T=0)/P(V,A|T=1))                      (11)

where the summations are over the values of the sensory
inputs.  The divergence between spontaneous and driven
likelihoods were computed for Poisson distributed inputs V,

Fig. 5. Simulating multisensory enhancement and inverse
effectiveness using the Bayes’ Rule model.

(Redrawn with permission from [8].)
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or V and A.  The spontaneous means were fixed at 4 for both
V and A, and their driven means were increased together
from 4 to 30.  The computed divergences D are shown in
Fig. 6a.  Consistent with intuition, the divergence D
increases as the difference between the spontaneous and
driven means increases.  Also, the divergence increases
faster for V and A than for V alone.  It might also be
consistent with intuition that the information provided by
the inputs should increase as the difference between their
spontaneous and driven likelihoods increases, and that
bimodal inputs should always provide more information
about the target than unimodal inputs.  Such is not the case.

The mutual information, or information gained about T
from inputs V, or V and A, is computed for the inputs as the
driven means increase, and the results are plotted in Fig. 6b.
The figure shows that information gain does increase as the
driven means increase, and that it increases faster for
bimodal than for unimodal inputs.  However, both curves
plateau at the same level [H(T) = 0.469].  Thus, as the
divergence between the spontaneous and driven likelihoods
increases, the input reaches a point where it provides
complete information about the target and cannot provide
more.  For the same reason, after the divergence between
the spontaneous and driven likelihoods reaches the point
where the information they provide has plateaued, a bimodal

input provides no more information than a unimodal input.
This information theoretic analysis may have important
implications for understanding MSE and the difference
between unimodal and bimodal deep SC neurons.

As Fig. 6b shows, an input with a small divergence
between the spontaneous and driven likelihoods carries
relatively little information about the target, but this amount
can be increased by an input of another modality (Fig. 6b
for driven means less than about 15).  In contrast, an input
with a large divergence between the spontaneous and driven
likelihoods carries the maximum amount of information
about the target, and input of another modality is
superfluous (Fig. 6b for driven means greater than about
25).  Thus, bimodal deep SC neurons may be those that
receive more uncertain unimodal input and require input of
another modality to increase the amount of information that
is transmitted to them.  Unimodal deep SC neurons may be
those that receive input of one modality that already
supplies the maximum amount of information.

It would be difficult to test this theory directly because
it is practically impossible to characterize the statistical
structure of the inputs to real SC neurons.  However,
information theoretic ideas can be used as the basis for
computational models of the development of MSE, and
these can be tested against neurophysiological data from the
deep SC of developing animals.
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